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. Major: CE (10(; EE (2(; Computer Science (3(; Transportation System Engineering (2(; 

Construction Engineering (2(; Environmental Engineering (1( 

. Ethnicities: Chicano/Latino (3(, Pacific Islander (1(, African American (1(, White (1(, 

Hispanic/Middle Eastern (2( and Asian (11(. 
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. Gender: Female (3); Male (11);
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Engineering (5); Structural Engineering (1) Construction Engineering (3); Geospatial
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. 
 
 

 

20 presentation made by 20 students at Symposium on August 17, 2016 

. 20 final reports by 20 students on August 25,2016 

. Comments and feedback provided by more than 15 students. 

. 6 Peer-reviewed Journal Papers: 

1. Cheng, W., G. Gill, R. Dasu, M. Xie, X. Jia, J. Zhou, "Comparison of Alternative 
Multivariate Poisson Lognormal Crash Frequency Models to Identify Hot Spots 
of Intersections based on Crash Types", Journal of Accident Analysis and 

Prevention, (Accepted for Publication) 
2. Cheng, W., X. Jiang, W. Lin, X. Wu, X. Jia, J. Zhou. "Ranking Cities for Safety 

Investigation by Potential for Safety Improvement". Journal of Transportation 

Safety and Security, (Under 2nd round of review) 
3. Gill, G., W. Cheng, M. Xie, T. Vo, X. Jia, J. Zhou. "Evaluating the Influence of 

Neighboring Structures 1 on Spatial Crash Frequency Modeling and Site Ranking 
Performance", Journal of Transportation Research Record, (Accepted for 
Publication in 2017 TRB Annual meeting, Under 2nd round of review for 
publication at Journal of Transportation Research Record) 

4. Cheng, W., G. Gill, R. Falahati, X. Jia, J. Zhou, T. Vo "Alternative Multivariate 
Multimodal Crash Frequency Models", ASCE Journal of Transportation 

Engineering, (Under the first round of review) 
5. Xie, M., W. Cheng, G. Gill, J. Zhou, X. Jia, S. Choi. "Comparison of Alternative 

Multivariate Poisson Lognormal Crash Frequency Models to Identify Hot Spots 
of Intersections based on Crash Types", (Accepted for Publication in 2017 TRB 
Annual meeting, Under 2nd round of review for publication at Journal of Traffic 

Injury and Prevention) 
6. Cheng, W., G. Gill, S. Choi, X. Jia, J. Zhou, M. Xie. "A New Approach to 

Addressing Temporal Correlation in Crash Frequency Modeling: Combination of 
Time-varying Coefficients and Autoregressive Process", (Accepted for 
Publication in 2017 TRB Annual meeting, Under 2nd round of review for 
publication at Journal of Traffic Injury and Prevention) 

  



 

5 

 

 

 

 

 

 

 

 

 

 

Appendix: List of Peer-reviewed journal Papers 

  



 

6 

 

Paper #1: Application of Multivariate Poisson Lognormal Spatial Crash 

Count Model to Identify Hot Spots of Intersections based on Crash Types 

Wen Chenga,*, Gurdiljot Singh Gilla, Ravi Dasu b, Meiquan Xie a,c, Xudong Jia a, Jiao Zhou a 

a Department of Civil Engineering, California State Polytechnic University, United States 
b California Department of Public Health, United States 
c School of Traffic and Transportation Engineering, Central South University, PR China 

 

Wen Cheng* Associate Professor, Department of Civil Engineering, California State Polytechnic University, Pomona 

3801 W. Temple Ave., Pomona, CA 91768 
Tel: (909) 869-2957 

Email:wcheng@cpp.edu 
 

Gurdiljot Singh Gill Graduate Research Assistant, Department of Civil Engineering, California State Polytechnic University, Pomona 

3801 W. Temple Ave., Pomona, CA 91768 
Tel: (909) 908-7084 

Email:gurdiljotg@cpp.edu 
 

Ravi Dasu, Research Scientist, California Department of Public Health# 

Sacramento, CA 95899-7377 
Tel: (916)552-9835 

Email: rkmdasu@gmail.com 
 

Meiquan Xie, Lecturer, School of Traffic and Transportation Engineering, Central South University c 
Changsha, Hunan 410075, PR China 

Visiting Scholar, Department of Civil Engineering, California State Polytechnic University, Pomona a 

3801 W. Temple Ave., Pomona, CA 91768 
Tel: (909)282-9142 

Email: mxie@cpp.edu 

 

Xudong Jia, Professor, Department of Civil Engineering, California State Polytechnic University, Pomona 

3801 W. Temple Ave., Pomona, CA 91768 
Tel: (909) 869-4312 
Email:xjia@cpp.edu 

 
Jiao Zhou, Graduate Student, Department of Civil Engineering, California State Polytechnic University, Pomona 

3801 W. Temple Ave., Pomona, CA 91768 
Tel: (714) 488-7965 

Email:jiaozhou@cpp.edu 

                                                           
* Corresponding author 
# Affiliation for this author is given for information purposes only. CDPH does not validate or authenticate the views/data 

presented in the paper and is the sole and only view of the author.  

mailto:wcheng@cpp.edu
gurdiljotg@cpp.edu
rkmdasu@gmail.com
mxie@cpp.edu
xjia@cpp.edu
jiaozhou@cpp.edu


7 

ABSTRACT 

Most of the hot spot identification (HSID) studies are focused on total crash counts with 

considerably less research dedicated to different crash types. This study compares four crash type-

based count models with and without the multivariate and spatial correlations for HSID purpose. 

It is anticipated that comparison of the ranking results of the four models would identify the impact 

of crash type and spatial random effects on the HSID. The data over a six -year time period (2004-

2009) of a set of intersections in the City of Corona, California were selected for the analysis. The 

crash types collected in this study include: rear end, head on, side swipe, broad side and hit object. 

Four evaluation tests which contain the Site Consistency Test, the Method Consistency Test, the 

Total Rank Difference Test, and the Total Performance Difference Test were applied to evaluate 

the performance of the four models. Moreover, two cutoff levels for hot spots were ex plored with 

the aim to represent different real world financial situations. Two goodness-of-fit measurements 

of models suggest that the strong correlations ex ist not only in different crash types but also in 

neighboring intersection across crash types. The four evaluation test results reveal that modeling 

performance of the four models is generally in line with the corresponding HSID performance. 

However, sometimes the heterogeneity uncaptured by the models might play a more important 

role in representing the safety condition of sites under investigation. Overall, it is suggested to 

develop sophisticated crash prediction models for HSID such as the model which accounts for 

both crash type and spatial correlations. 

Keywords: Hot Spot Identification, Multivariate, Spatial Correlations, Evaluation Tests, Crash 

Count Models 
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1. INTRODUCTION AND BACKGROUND 

During the year of 2014, 32,675 fatalities occurred on the US roads and the number of injuries and 

trauma sufferers is far greater at 2,338,000 annual injuries. In addition, road accidents were the 

leading cause of death among ages 16 through 24 in 2014 (NHTSA, 2016).  The fatalities reflect 

a significant proportion of healthy lives which could have been saved by the application of 

appropriate safety countermeasure treatments. The traffic management processes which address 

safety issues include network screening, problem diagnosis, countermeasure identification, and 

project prioritization. Among these processes, detection of high risk sites (also called hotspots, 

black spots, site with promise, etc.) is of paramount importance for the improvement of driving 

environment from safety perspective. The consequences of inaccurate identification would result 

in two scenarios. First, the screening process may detect truly safe sites as unsafe. Second, truly 

unsafe sites are not detected, and thus the opportunity to treat the real hotspots is missed.  

 

In general, the network screening follows into two categories: the Systemic Approach and Spot 

Location Approach (Preston et al. 2013). Comparatively speaking, the latter one is more traditional 

and relies heavily on the crash history to screen out the most unsafe locations which need 

remediation. Under Spot Location approach, upon completion of screening, the next step of 

problem diagnosis is conducted on the identified locations where site issues are usually revealed 

through the overrepresentation of certain crash outcomes such as rear-end, head-on, and others. 

Further, safety countermeasures are implemented to enhance the roadway safety situation. The 

effectiveness of such countermeasures is normally assessed on the basis of their benefit of crash 

reduction and the deployment cost. The Spot Location approach has been very popular among 

researchers and widely used in practice. The hot spot identification (HSID) methods of this type 
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range from classical crash count (Deacon et al., 1975) and crash rate (Norden, 1956) methods to 

more sophisticated ones including Empirical Bayes (Hauer et al., 2002; Cheng & Washington, 

2005; Persaud et al.,2010; Wu et al., 2014) and Full Bayesian approaches (Davis and Yang, 2001; 

Washington and Oh, 2006; Huang et al., 2009;Lan et al., 2009; Persaud et al., 2010), which can 

obliterate the  Regression to the Mean (RTM) bias (Hauer, 1986; Hauer, 1996; Persaud, 1988; 

Hauer, 1997; Carriquiry and Pawlovich, 2004) associated with observed crash count data. Some 

researchers flag out the hazardous locations based on potential safety improvement or "excess" 

crashes (Jiang et al., 2014), while others conduct HSID through the Level of Service of Safety 

(Kononov & Allery, 2003 and 2004). Finally, a study by Miranda-Moreno et al. (2009) 

recommends incorporating crash severity and occupancy into site ranking. One condition of the 

success of the above mentioned Spot Location HSID methods is the availability of crash history 

for sites under investigation. This may become an issue in some situations. For example, there is 

non-availability of robust crash data for lots of rural areas, especially for the occurrence of severe 

crashes with typically low density (Preston et al. 2013). In such instances, the traditional Spot 

Location approach sometimes tends to underperform in HSID and the procedure may result in low 

safety benefits (Caltrans, 2015). This issue can be addressed by the Systemic approach, which is 

relatively new and tend to bridge the gap between hotspot detection and countermeasures 

implementation (Sawyer et al., 2011). Rather than filter out the sites based on crash history, this 

method is somewhat proactive and targets the sites lacking safety measures to prevent a specific 

type of crash. It mainly involves the implementation of remedial safety countermeasures, which 

are previously proven efficient for certain crash types such as run-off road crashes, at multiple 

crash locations, corridors, or geographic areas (Wang et al, 2014). In many cases, this method is 

more cost efficient than the Spot Location one due to the large scale impact. A major characteristic 
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of the Systemic Approach is the crash type-oriented HSID, and a clear understanding of the 

interaction between crash count of various types and their causal factors is important for the 

successful implementation of such approach.   

 

Most of the studies are focused on the general crashes or total crash counts while considerably less 

research has been dedicated to different crash types. Qin et al. (2005) using  Poisson regression 

models developed using Markov Chain Monte Carlo methods found a nonlinear relation between 

crashes and daily volume, and variation in the relationship for different crash types: single-vehicle, 

multivehicle same direction, multivehicle opposite direction, and multivehicle intersecting. . Kim 

et al. (2006) used univariate Poisson and Negative Binomial models for crash counts of different 

types at 160 rural intersections. Data suggests that different pre-crash conditions were linked with 

crash types and models based on prediction of total crash frequency may fail to identify pertinent 

countermeasures. Subsequently, Kim et al. (2007) used Binomial multilevel modeling techniques 

to validate the presence of hierarchical structure in crash data which points towards the causal 

mechanisms in vehicular crashes (Angle, head-on, rear-end, and sideswipe) due to their 

relationship with roadway, environmental, and traffic factors. The effects of time and weather on 

crash types were explored by El-Basyouny et al. (2014) using Bayesian multivariate Poisson 

lognormal models for the prediction of seven crash types (Follow-Too-Close, Failure-To-Observe-

Traffic Signal, Stop-Sign-Violation, Left-Turn-Across-path, Improper-Lane-Change, Struck-

Parked-Vehicle, and Ran-Off-Road). This study established the strong significance of temperature, 

snowfall, and day of week on occurrence of different types of crashes. More recently, Jonathan et 

al. (2016) applied Bayesian multivariate Poisson lognormal spatial model to a group of two-lane 

highway segments in rural areas of Pennsylvania for HSID and compared its ranking performance 



 

to three competing models. Four categories of crashes were analyzed which include same-direction, 

opposite-direction, angle and hit fixed-object. Their results show that the model that considers both 

multivariate and spatial correlation has the best fit.
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The primary goal of the present study is to compare four models of crash type based HSID methods 

with and without the multivariate and spatial correlations. Additionally, this study also 

demonstrates unique contributions and key differences from Jonathan et al. (2016). First, the study 

is targeted in analyzing the data of intersections rather than road segments. This would serve as an 

important addition as intersections are more prone to a diverse nature of crash types due to a variety 

of reasons (geometric limitations and interaction between pedestrians, bicyclists and vehicles, and 

so on). Second, instead of treating the data as a singular unit, this study divides crash dataset into 

two time periods of the same size, which allows us to cross validate the relative ranking 

performances in terms of before and after periods. Third, based on the two subgroups of data, four 

previously proposed HSID evaluation tests which include namely Site Consistency Test (SCT), 

Method Consistency Test (MCT), Total Performance difference test (TPDT) and Total Rank 

difference test (TRDT), are employed to assess the performance of alternative methods from 

different angles. Fourth, two cutoff levels for hot spots are explored which contain both top 5% 

and 10% of intersections. This aims to represent different real world financial situations.  Lastly, 

five different crash types are examined: Rear end, Head on. Side Swipe, Broad Side, and Hit Object. 

It is expected that the inclusion of crash counts of different types would help to understand the 

different impacts of geometric, traffic, and environmental factors on crash type, and catch some 

hazardous locations which might escape the total count-based HSID methods. 

 



 

The remainder of this paper first describes the four hierarchical Bayesian models four HSID 

purpose. These models predict the different crash outcomes happening at intersections with and 

without accounting for the crash type and spatial random effects. Then, we describe the four HSID 

evaluation tests which compare the performance of the four models from different perspectives. 

Following this, the data preparation and the crash prediction modeling results are then described. 

We then present the results of the four evaluation tests. Conclusions and recommendations follow. 
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2. METHODOLOGY 

This study analyzed five types of crashes happened at the intersections of a city. The process 

involved development of four hierarchical Bayesian models for estimation of crash types and 

evaluation of site ranking performance based on two time periods. The four models are: univariate, 

multivariate, univariate spatial and multivariate spatial. The results from these methods were 

evaluated by four previously proposed tests to distinguish the best approach for HSID based on 

crash types at intersections. It is anticipated that comparison of the ranking results of the four 

models would identify the impact of heterogeneity and spatial random effects on the HSID.  The 

details of different models and tests are described below:  

2.1 Full Bayesian Method  

A full Bayesian approach is based upon Bayes, theorem. Similar to the Empirical Bayesian (EB) 

method, the Full Bayesian (FB) method has been widely used in traffic safety analysis (Davis and 

Yang, 2001; Washington and Oh, 2006). In this study, an FB was selected over EB for three 

reasons. First, since the sample size in the current study is relatively small and considering the 

impact of the size of reference population on the validity of EB results (Lan et al., 2009), we chose 

FB method. Second, FB can produce a smoother integration of prior information and all available 

data into a posterior distribution, rather than point estimates provided by EB. Third, FB allows 



 

more complicated model specifications such as the multivariate conditional autoregressive for 

spatial correlations analysis, as required by this study. 
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2.2 Univariate Poisson-Lognormal Model (UVPLN) 

This models rests on the assumption that crash occurrence of certain type j at a given location i in 

time period t, yijt, obeys Poisson distribution, while the corresponding observation specific error 

term εijt follows normal distribution. In comparison with the normal Negative Binomial model 

(Poisson Gamma), this model was better suited for this study as it could better handle the low 

sample mean and small sample size due to the heavier tails associated with Lognormal 

distribution(Lord and Miranda-Moreno, 2008), The model specification of PLN can be expressed 

as: 

                                                                                                   }yijt|λijt~Poisson	(λijt)ln(λijt) = Xijt, β + εijtεijt~Normal	(0, τ2	)  (1)

Where i is the site index, j is the crash type,  t is the time period index, y is the recorded crash 

number, λ is the expected crash number, X, is the matrix of risk factors, β is the vector of model 

parameters, εijt is the independent  random effects and τ2 is the variance of the normal distribution 

for εijt.. These random effects capture the extra-Poisson heterogeneity among intersections. The 

inverse of variance is known as precision and it has a gamma prior: 

 

                                       τ2-1~Gamma(0.01, 0.01) (2)                                                                  

with prior mean equal to one and its prior variance large (equal to one hundred), representing high 

uncertainty or prior ignorance. 
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2.3 Multivariate Poisson-Lognormal Model (MVPLN) 

The major difference between MVPLN and UVPLN lies in the error term ε. Rather than assume 

an independent  εijt across crash types as shown in Equation 1, MVPLN employs an error term εij 
which is assumed to follow a multivariate normal distribution with the following expression: 

 {yijt|λijt~Poisson	(λijt)ln(λijt) = Xijt' β + εijεij~Normal	(0, ∑)  (3)                                                                                        

Where     εij =
 {
|||
εit1εit1εit3εit4εit5 }
 | |{  ,  ∑ =	(σ11 ⋯ σ15⋮ ⋱ ⋮σ51 ⋯ σ55)  (4)                                                                                           

The diagonal element σjj in the covariance matrix of Equation 4 represents the variance of εij, 
where the off-diagonal elements represents the covariance of different crash types.  The inverse of 

the covariance matrix represent the precision matrix and has the following distribution: 

                                                           ∑-1~Wisℎart(I, J) (5)                                                              

Where I is the J x J identify matrix (Congdon, 2006), and J is the degree of freedom, J=5.  

This model specification allows simultaneous processing of various crash types and takes into 

consideration the correlation between the dependent variables. 

2.4 Univariate Poisson-Lognormal Spatial Model (UVPLNS) 

UVPLNS is very similar to UVPLN with the exception of the additional spatial random effect, uij. 
Equation 1 is slightly modified to represent the model specification of UVPLNS shown as follows.  

                                } yijt|λijt~Poisson	(λijt)ln(λijt) = Xijt' β + εijt + uijεijt~Normal	(0, τ2	)  (6)                                                                     
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Where uij  is fit by the conditional auto-regressive model (CAR) originally proposed by Besag 

(1974) which can be expressed with the following distribution:  

                                    uij|ukj , ∅j  	~N (∑ ujkWiki~k∑ Wiki~k , ∅j-1∑ Wiki~k ) (7)                                                                

Where i~k represents the neighbors of intersections i, Wik is the weight intersection k has on 

intersection i, and φj is the precision for each type j. The same gamma prior used in Equation 2 

was employed for φj. Various weight structures have been explored in previous studies (Xu and 

Huang, 2015; Aguero-Valverde and Jovanis, 2010; Guo et al., 2010) containing adjacency-based, 

corridor-based, distance order, distance exponential decay, semi-parametric geographically 

weighted, and so on. For the present analysis which focuses on the evaluation of various HSID 

methods, the adjacency-based first order structure was used. In other words, if i and k are 

adjacent, Wik = 1, otherwise, Wik =0. 

 

2.5 Multivariate Poisson-Lognormal Spatial Model (UVPLNS) 

Under this model, a spatial error term ui is added to Equation 3 which leads to the following 

expression:  

                         { yijt|λijt~Poisson	(λijt)ln(λijt) = XiJt' β + εiJ + uiεiJ~Normal	(0, ∑)  (8)                                                                   

 

Where ui is fit by a zero-centered multivariate conditional auto-regressive model (MCAR, Mardia, 

1998) which has a conditional normal density shown as follows:  

                                    ui|uk, ∑ i 	~Nj(∑ Cikk~i , uk, ∑ i		) (9)                                                                
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Where each ∑ i is a positive definite matrix representing the conditional variance matrix, and the 

adjacency matrix cikis of the same dimension with ∑ i . ∑ i also follows the Wishart distribution 

as shown in Equation 5.  

2.6 Goodness-of-Fit of the Models 

The deviance information criterion (DIC) was used as a measure to assess the goodness of fit of 

the models. DIC (Spiegehalter et al., 2003) is a hierarchical modeling generalization of the AIC 

(Akaike information criterion). Specifically, DIC is defined as: 

                           DIc = D(θ) + 2pD = D(θ)------- + pD  (10) ̅                                                              

Where D(θ) is the deviance evaluated at the posterior means of estimated unknowns (θ), and 

posterior mean deviance D---(-θ--)- can be taken as a Bayesian measure of fit or "adequacy". pD is 

motivated as a complexity measure for the effective number of parameters in a model, as the 

difference between D(θ) and D---(-θ--)-, i.e., mean deviance minus the deviance of the means. Similar 

to the AIC, DIC gives a measure of fitness of the model with the actual data. Models with 

comparatively lower DIC values indicate a better fit which in turn indicates that the model closely 

replicates the real data. As a general guideline by Spiegehalter et al., (2003), a difference of 7+ 

points in the DIC is treated as significant for modeling performance.

̅ ̅

̅

  

 

2.7 HSID EVALUATION 

2.7.1 Evaluation Criteria of HSID Performance  

The above four models under the FB framework were applied to the group of intersections for 

HSID purpose.  The sites were ranked in decreasing order of the posterior mean of crash count for 

each crash type, i.e., λ ijt.  Four previously proposed evaluation tests were then employed to 

quantify the superiority among these methods which include the Site Consistency Test (SCT), 

Method Consistency Test (MCT), Total Rank Differences Test (TRDT) and Total Performance 



 

Difference Test (TPDT). The reader wishing more detail on these tests can refer to the studies 

(Cheng and Washington, 2008; Huang et al., 2009; Montella, 2010;   Jiang et al., 2014). The brief 

description of each test is presented below. 

17 

 

 

2.7.2 Site consistency test (SCT)    

This test bears the assumption that an unsafe site would remain hazardous in the future if there is 

no safety treatment delivered. The test is conducted by computing the sum of posterior mean of 

crash counts,λijt,  in time period i+1 for a certain number of hotspots that were identified by 

various methods in previous period i. The larger SCT score indicates a better HSID method. The 

expression of SCT is shown as follows: 

                              scTj = ∑ crasℎ	statistick(i),method=j,i+1nk=1  (11)                                                     

 Where crasℎ	statistick(i),method=j,i+1is the crash statistic in time period i+1 for a site that is 

ranked k in time period i as identified by the HSID method j. The crash statistic varies from method 

to method. To ensure the comparability of all HSID methods under this test, the study used the 

relative difference of SCT which can be expressed by the following equation: 

Relative	Difference	(scTj) = ∑ crash	Statistick(i),method=j,nk=1 -∑ crash	Statistick(i),method=j,i+1nk=1∑ crash	Statistick(i),method=j,ink=1  (12)         

 

The smaller value of the relative difference of SCT indicates more reliability of the corresponding 

method. 

2.7.3 Method consistency test (MCT)  

This test shares the same premise as SCT, i.e. the sites which are actually unsafe would rank higher 

in both periods provided that no safety treatment is applied. It relies on the number of common 
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sites that make it to the top ranks in consecutive time periods. A larger MCT score indicates a more 

preferred HSID method. By definition, MCT is expressed as: 

                                 McTj = {k1, k2, … , kn}i ⋂{k1, k2, … , kn}i+1 
(13) 

                                             

Where i, k have the same definition as shown in Equation 11. Likewise, the percentage of common 

sites relative to the total number of hot spots can also be calculated.   

2.7.4 Total rank difference test (TRDT) 

This test develops upon the limitation of MCT by taking into account the rank difference of an 

identified hotspot during successive periods of time. The rank difference is calculated by using the 

following equation. 

                                      TRDTj = ∑ |R(kj,i) − R(kj,i+1)|nk=1  (14)                                                     

 Where R(kj,i) is the rank of site k in time period i identified by the HSID method j. 

The smaller value indicates that the particular HSID method assigns nearly same rankings to the 

same hotspots during successive time periods, and therefore, is more reliable. 

2.7.5 Total performance difference test (TPDT) 

This test is somewhat similar to total rank difference test. This test assumes that crash statistic of 

the same site across different time periods should remain close. The computation of TPDT is 

shown in Equation 15. 

           		TPDTj = ∑ |(crasℎ	Statistick(i),method=j,i+1 − crasℎ	Statistick(i),method=j,i)|nk=1
(15) 

 

Where Crash statistic, i, j, k have the same definitions as shown in Equation 11. 
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Likewise, the crash statistic is different for different HSID methods. In order for comparable 

results, the study used the relative difference of TPDT which has the following expression: 

                       Relative	Difference	(TPDTj) = 		TPDTj∑ Crash	Statistick(i),method=j,ink=1  (16)                      

The relative difference is a percent value. The smaller the relative difference of TPDT, the better 

performance the method tends to have. 

3. DATA DESCRIPTION 
 

In order to capture a relationship between crashes of different types and covariates with spatial 

correlations being considered, a total of 137 intersections in the City of Corona, California were 

randomly selected for analysis. The crash severity and type were outputted for years 2004 to 2009 

using Crossroads Collision Database software. The crash types collected in this study include: rear 

end, head on, side swipe, broad side and hit object. In addition to crash type, the crashes were 

divided into five crash severities: fatal, severe injury, other visible injury, complaint of pain, and 

non-injury. Aerial photographs and GIS maps were used to collect traffic and roadway information 

which include: (1) Major road speed limit, (2) minor road speed limit, (3) major road ADT, (4) 

minor road ADT, (5) signalized intersection, (6) at least one exclusive right turn lane on major 

road, (7) at least one exclusive left turn lane on major road, (8) at least one exclusive right turn 

lane on minor road, (9) at least one exclusive left turn lane on minor road, (10) number of lanes on 

major road in both directions, (11) number of lanes on minor road in both directions, (12) presence 

of pedestrian crossing at least one leg of major road, (13) presence of pedestrian crossing at least 

one leg of minor road, (14) presence of a T or three way intersection, (15) presence of a four way 

intersection, (16) number of driveways that are within 250' radius of center of intersection of major 
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road, and (17) number of driveways that are within 250' radius of center of intersection of minor 

road. Relevant information about the various variables is shown below in Table 1. 

Table 1: Variables Used in the Study 

Variables Definition Mean Min Max 

RE Total number of Rear End crashes at an intersection  6.15 0 52 

HEO Total number of Head On crashes at an intersection 0.64 0 5 

SS Total number of Side Swipe crashes at an intersection 2.19 0 24 

BS Total number of Broad Side crashes at an intersection 5.43 0 64 

HIO Total number of Hit Object crashes at an intersection 0.84 0 7 

AADTMAJ Average Annual Daily Traffic on Major Road 18290 2700 49100 

AADTMIN Average Annual Daily Traffic on Minor Road 7756 1300 30200 

TINT 
Intersection type 
(1 if T or 3-way intersection, 0 if 4-way intersection) 

0.34 0 1 

SIGNAL Intersection type 
(0 if non-signalized intersection, 1 if signalized 0.75 0 1 
intersection) 

RTLMAJ Right-Turn Lane Indicator (1 if at least one right-turn 
lane on the major road, 0 otherwise) 

0.328 0 1 

LTLMAJ Left-Turn Lane Indicator (1 if at least one left-turn lane 
on the major road, 0 otherwise) 

0.854 0 1 

RTLMIN Right-Turn Lane Indicator (1 if at least one right-turn 
lane on the minor road, 0 otherwise) 

0.51 0 1 

LTLMIN Left-Turn Lane Indicator (1 if at least one left-turn lane 
on the minor road, 0 otherwise) 

0.74 0 1 

DRWYMAJ Number of Driveways on Major road within 250ft of 
the intersection center 

1.46 0 9 

DRWYMIN Number of Driveways on Minor road within 250ft of 
the intersection center 

1.56 0 11 

SPDLIMAJ Speed Limit on Major road in mph 40.54 35 45 

SPDLIMIN Speed Limit on Minor road in mph 38.9 25 50 

PEDMAJ 
Pedestrian crossing indicator (1 if at least one 
pedestrian crossing on the major road, 0 otherwise) 

0.73 0 1 

PEDMIN 
Pedestrian crossing indicator (1 if at least one 
pedestrian crossing on the minor road, 0 otherwise) 

0.85 0 1 

NUMMAJ Number of lanes on major road (both direction) 3.94 2 6 

NUMMIN Number of lanes on minor road (both directions) 2.62 1 6 

 
 

 

 

 

 

 

 

4. Description of Modeling Results 

The aforementioned four models were tested in freeware WinBUGS version 1.4.3 package 

(Spiegelhalter et al., 2003). In model calibration of MVPLN, UVPLNS, and UVPLN models, two 
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chains of 20,000 iterations were set up for each model. After ensuring the convergence, first 5,000 

samples were discarded as adaptation and burn-in. However, 50,000 iterations were used for 

MVPLNS since this one has substantially more complex random effects and hence require more 

simulations for satisfaction of the desired threshold of MC errors lower than 5% of the standard 

deviation of the parameters.  It is noteworthy that these models should not be judged on their ability 

to explain the causal factors related to crash occurrence. The main purpose for developing these 

functions is to provide the expected crash counts for various crash types that are required for site 

ranking ̲̲thus the focus is on crash prediction, not explanation. 

 

Modeling results of these models including, DIC, Dbar, the mean, standard deviation, and MC 

error of the posterior distribution, are presented in Table 2. Both the DIC and Dbar values indicate 

that the MVPLNS model is superior to the other models in fitting the crash data with the smallest 

DIC and Dbar values of 3,025 and 2,559, respectively. The MVPLN model places second with 

DIC 120 points higher than that of MVPLNS. The two univariate models are very similar and 

perform the worst with the DIC and Dbar values significantly larger than their Multivariate 

counterparts. This is consistent with previous research (Jonathan et al., 2016) and suggests that 

strong correlations exist among different crash types and the multivariate random errors are 

significantly spatially correlated.   

 

In terms of variable significance and coefficients, it is important to note that both statistically 

significant variables and corresponding coefficient values vary across various crash types and 

models. The potential reason might be due to relative small sample size (137 intersections by 3 

years) used. In comparison with other variables, the AADT for major streets (β3) has significant 
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impacts on crash types in most cases with different coefficient values, indicating AADT exerting 

varied influences on the crash types. 

Table 2:  Description of Results of Various Models 

Types Variables MVPLNS MVPLN UVPLNS UVPLN 
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ly the explanatory variables that are statistically significant at the 95% significance level are 

shown in the table. The blank cells indicate the variables are not statistically significant for the 

corresponding models.  2. β0-Intercept; β1-coefficient for "MAJORSPEED"; β 3-coefficient for 

"MAJORADT"; β 4-coefficient for "MINORADT"; β 6-coefficient for "MAJRTURN"; β 8-coefficient for 
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"MINRTURN";  12-coefficient for "PEDXMAJ";  14-coefficient for "TINTERSECTION"; 15-

coefficient for "F

β
OURWAYINT". Refer to Table 1 f

β
or full list and descriptions of explanatory v

β
ariables. 

5. EVALUATION TEST RESULTS 

Four evaluations tests (SCT, MCT, TRDT and TPDT) were used to analyze the relative superiority 

in HSID of four hierarchical Bayesian crash count models namely, MVPLNS, MVPLN, UVPLNS 

and UVPLN. It is expected that the method(s) with better evaluation test results would be the 

preferred ones(s).  Following steps were followed for this evaluation procedure: 

1. The dataset was evenly divided into two periods, Period 1 (2004-2006, "before" period) and 

Period 2 (2007-2009, "after" period).  

2. Each of the four crash count models were developed for each of the five crash types, based on 

both before and after time periods. 

3. For each intersection, the average of the three-year Bayesian estimated crash counts for both 

Period 1 and 2 was calculated for application of four HSID evaluation tests.  

4. For each test, both top 5% and 10% were used as the cutoff level for HSID.  

 

The detailed test results for each crash type and the aggregate one are described in the following 

subsections. 

5.1 Site Consistency Test Results 

Table 3: Site Consistency Test Results of Various Crash Count Models 

  MVPLNS  MVPLN  UVPLNS  UVPLN  

CRASH TYPE 5% 10% 5% 10% 5% 10% 5% 10% 

Rear End (1) 3.58% -11.43% 13.07% -7.20% 17.29% 7.11% 35.47% 23.87% 

Head On (2) 92.75% 90.13% 99.19% 98.58% 93.01% 93.44% 99.61% 91.77% 

Side Swipe (3) 46.78% 54.09% 35.59% 29.68% 35.94% 41.13% 53.95% 55.79% 
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Broad Side (4) 42.07% 36.42% 45.56% 41.19% 47.52% 43.88% 50.85% 45.17% 

Hit Object (5) 28.81% 28.92% 37.86% 32.09% 68.56% 61.33% 54.95% 62.71% 

Accumulated 42.80% 39.63% 46.26% 38.87% 52.47% 49.38% 58.97% 55.86% 

Note: The bold text represents the best performance in different cases. If different HSID methods share 

the same best performance, then each of the HSID method is highlighted with bold text.   

Table 3 exhibits the relative difference of SCT from Period 1 to Period 2 following Equation 12. 

If a particular model is better for HSID, then the corresponding SCT will have small percentage 

change across the two time periods. Table 3 clearly demonstrates that MVPLNS is significantly 

consistent in identification of hotspots in consecutive periods as it has the lowest SCT percent 

change, for both 5% and 10% thresholds, in eight out of ten cases. For the Crash type 3, MVPLN 

performs best with the percent changes of 35.59% and 29.68%, respectively. The univariate 

models perform the worst in all situations. This evaluation test reflects that the multivariate models 

performed better than the univariate models. This trend is similar for both 5% and 10% hotspots. 

This indicates that there is a need to consider correlation among various crash types at the same 

sites for HSID. Given the MVPLNS has the best test results in most cases, it implies that 

accounting for spatial correlation among intersections also enhances the HSID performances.  

5.2 The Method Consistency Test Results 

 

Table 4: Method Consistency Test Results of Various Crash Count Models 

  MVPLNS MVPLN  UVPLNS   UVPLN  

CRASH TYPE 5% 10% 5% 10% 5% 10% 5% 10% 

Rear End (1) 42.86% 71.43% 42.86% 78.57% 42.86% 57.14% 42.86% 42.86% 

Head On (2) 0.00% 0.00% 0.00% 0.00% 0.00% 7.14% 0.00% 7.14% 

Side Swipe (3) 14.29% 35.71% 14.29% 21.43% 28.57% 28.57% 28.57% 28.57% 

Broad Side (4) 42.86% 28.57% 42.86% 21.43% 42.86% 35.71% 28.57% 35.71% 
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Hit Object (5) 28.57% 28.57% 28.57% 28.57% 14.29% 28.57% 28.57% 14.29% 

Accumulated 25.71% 32.86% 25.71% 30.00% 25.71% 31.43% 25.71% 25.71% 

Note: The bold text represents the best performance in different cases. If different HSID methods share 

the same best performance, then each of the HSID method is highlighted with bold text.   

Table 4 records the percentage of common sites identified in both periods relative to the total 

number of hot spots. The larger MCT percentage values indicate a more consistent HSID 

performance. Different than Table 3, it can be seen from Table 4 that the performance of alternative 

results is truly mixed across different crash types. For the accumulated result of top 5% sites, every 

model performed almost the same. In case of accumulated result of top 10%, the MVPLNS is the 

best method with highest percentage value of 32.86%, followed by UVPLNS and MVPLN. 

UVPLN again ranks the last place.     

5.3 Total Rank Difference Test Results 

Table 5: Total Rank Difference Test Results of Various Crash Count Models 

  MVPLNS   MVPLN  UVPLNS   UVPLN 

CRASH TYPE 5% 10% 5% 10% 5% 10% 5% 10% 

Rear End (1) 89 131 81 110 137 250 264 384 

Head On (2) 494 838 615 908 322 635 705 1128 

Side Swipe (3) 201 563 250 516 184 553 277 418 

Broad Side (4) 204 436 265 451 310 587 385 672 

Hit Object (5) 187 421 221 398 368 599 393 623 

Accumulated 235 478 286 477 264 525 405 645 

Note: The bold text represents the best performance in different cases. If different HSID methods share 

the same best performance, then each of the HSID method is highlighted with bold text.   

 

Table 5 shows the total rank difference test results using Equation 14. The smaller TRDT score 

signifies a better HSID method. The Accumulated section of Table 5 shows that MVPLNS has the 
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lowest score of 235 for top 5%. For 10%, MVPLN and MVPLNS are very close with the MVPLN 

performing best with slightly lower score of 477. In terms of the different crash types, the four 

models again have mixed performances in different cases. For example, UVPLNS ranks the first 

in identifying both top 5% and 10% of head on crashes, while UVPLN outperforms others in the 

case of top 10% of side swipe crashes.   

5.4 Total Performance Difference Test Results 

Table 6: Total Performance Test Results of Various Crash Count Models 

  MVPLNS MVPLN  UVPLNS    UVPLN  

CRASH TYPE 5% 10% 5% 10% 5% 10% 5% 10% 

Rear End (1) 32.65% 36.90% 28.39% 34.95% 42.38% 48.68% 54.14% 56.48% 

Head On (2) 92.83% 90.15% 99.02% 98.53% 92.99% 93.44% 99.60% 99.64% 

Side Swipe (3) 74.13% 72.48% 80.80% 84.65% 78.47% 81.19% 67.03% 64.30% 

Broad Side (4) 46.64% 44.65% 50.70% 44.78% 49.75% 51.04% 50.85% 52.03% 

Hit Object (5) 65.93% 67.24% 46.76% 56.88% 86.29% 80.95% 81.43% 79.71% 

Accumulated 62.44% 62.28% 61.13% 63.96% 69.98% 71.06% 70.61% 70.43% 

Note: The bold text represents the best performance in different cases. If different HSID methods share 

the same best performance, then each of the HSID method is highlighted with bold text.   

Table 6 presents the relative difference of TPDT according to Equation 16. The smaller TPDT 

percent value suggests that the particular HSID method is relatively better. It is known from Table 

6 that multivariate models perform better than their univariate counterparts in eight out of 10 cases 

which include the four crash types for 5% and 10% thresholds. The accumulated results also show 

similar trend. In cases of crash types 1 and 5, the percent values of univariate models are almost 

twice the ones of MVPLN. This trend clearly depicts that multivariate models prove to be superior 

while handling HSID in case of intersections experiencing different types of crashes.  
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Overall, review of Tables 2~6 reveals that modeling performance of the four models is generally 

in line with the corresponding HSID performance, especially for the accumulated evaluation 

results, where MVPLNS and MVPLN claim the top places under all conditions. However, if we 

consider the cases of individual crash types, the four models have mixed HSID performance with 

UVPLNS and UVPLN showing the superior performances in some cases, albeit much less than 

those of the multivariate ones.  Such phenomena indicate the models with better crash prediction 

performances have an overall better HSID performance. However, sometimes the heterogeneity 

uncaptured by the models might play a more important role in representing the safety condition of 

sites under investigation. 

6. Conclusions and Recommendations  

In this study, we applied multivariate passion log normal spatial model (MVPLNS) to a group of 

intersections at the City of Corona in California and compared its ranking performance with three 

other models including MVPLN, UVPLNS and UVPLN similar to a previous study on site ranking 

by crash types (Jonathan et al. 2016). Our study adds to the current literature on crash type-based 

ranking methods and thus provides additional tools for the recently proposed Systemic Approach 

for network screening of roadways (Preston et al. 2013).   

 

Two goodness-of-fit measurements (Dbar and DIC) were used to assess the performance of the 

four models in fitting the crash count of various types. The findings indicate that the MVPLNS 

model performs the best followed by the MVPLN model. Both univariate models have similar 

performances that are below expectation. Our results are in agreement with the previous study 
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(Jonathan et al. 2016) and suggest that the strong correlations exist not only in different crash types 

but also in neighboring intersection across crash types.  

 

Four previously proposed evaluation tests containing SCT, MCT, TRDT, and TPDT were applied 

for the assessment of alternative models via the cross validation based on before and after time 

periods. In terms of accumulated results which combine all crash types, the two multivariate 

models consistently outperform their univariate counterparts. Specifically, in the case of top 5% 

hot spots, MVPLNS has the greatest advantage in 3 out 4 tests, while under the condition of top 

10% sites, MVPLNS and MVPLN share the best performance with each of them claiming the first 

place in 2 tests. It follows that the better models fitting the crash count also leads to better 

performance in hot spot identification.  However, it is also important to note that the four models 

have mixed performance in terms of identifying hot spots of different crash types. For example, 

under the TPDT test, UVPLN outperforms others in identifying both top 5% and 10% sites of Side 

Swipe, while in the TRDT test, the UVPLNS is superior to others in flagging out both top 5% and 

10% intersections of head on. Such phenomenon indicates the benefits associated with MVPLNS 

and MVPLN in the HSID are not as prominent as in the crash prediction functions.  The main 

reason might be due to the two kinds of safety clues of each intersection under investigation (Hauer 

et al., 2002). The first type of clues is represented by the common traits of reference populations 

as shown in the crash prediction models. The second kind goes to the crash history of individual 

sites which may contain the unobserved heterogeneity associated with omitted variables such as 

pavement conditions, enforcement levels, etc. Sometimes such heterogeneity uncaptured by the 

models plays a significant role in representing the crash safety and therefore offset the benefits of 

better crash prediction models to some degree. Overall, based on the aggregate results, it is 
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suggested to develop sophisticated crash prediction models for HSID such as MVPLNS which 

accounts for both crash type and spatial correlations.         

 

Even though the study complemented the previous research through the use of intersection data, 

different cut-off levels for hot spots and various ranking performance evaluation tests, it is 

important to note that the results presented here carry some caveats. First, the sample size of the 

data used is relatively small (137 intersections of 3 years before and after data), and the relative 

performances of HSID methods may change when using crash data of larger size (this result is 

possible but not expected). Second, only adjacency-based first order weight matrix is used in the 

research when modeling the spatial random effects. Other weight structures such as corridor-based, 

distance order, distance exponential decay, semi-parametric geographically weighted, etc. are 

works in progress for further evaluation of the current paper,s findings. 
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ABSTRACTS 

The authors performed a city-level hotspot identification by using the four-year data of 265 cities 
in California. It is intended to equip road safety professionals with more useful information to 
compare the safety performance of city as a whole. Potential for Safety Improvement (PSI) was 
adopted as a measure of crash risk to compare alternate HSID methods, including the Empirical 
Bayes and three full Bayesian alternatives, Negative-Binomial Poisson Log-Normal, and the 
Poisson Temporal Random Effect, for ranking the safety performance of cities. Five evaluation 
tests which contain the Site Consistency Test, the Method Consistency Test, the Total Rank 
Difference Test, the Total Performance Difference Test and the Total Score Test were applied to 
evaluate the performance of the four HSID methods. Moreover, two cutoff levels, top 5% and 
10% cities, were employed for more reliable results. 
 
Overall, the study results are consistent with the results of previous quantitative evaluations 
focused on micro-level HSID. The three FB approaches significantly outperform the EB 
counterpart. The method accounting for temporal random effect produces more reliable HSID 
results than those without considering the serial correlations in collision counts.  
 
Keywords: Hotspot Identification, the empirical Bayes, the full Bayesian, city-level  
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1. INTRODUCTION 
Identification of hot spot (HSID), also known as site with promise, black spots, or 

accident-prone locations, is an important task in road and traffic safety which seeks to screen out 
the hazardous locations in a roadway network for further improvement. The importance of this 
task has been echoed in various transportation bills including the Intermodal Surface 
Transportation Efficiency Act (ISTEA), the subsequent Transportation Efficiency Act for the 21st 

Century (TEA-21), the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A 
Legacy for Users (SAFETEA-LU), and currently the Moving Ahead for Progress in the 21st 
Century Act (MAP 21). The Federal transportation legislation requires each state to develop a 
work plan outlining strategies to implement Safety Management Systems (2003) and submit an 
annual report describing at least 5% of their highway locations demonstrating the most severe 
safety needs.  

In the last several decades, there has been a fairly extensive literature focused on methods 
for ranking sites for further investigation.  There are papers that discuss methods based on crash 
count or frequency (Deacon et al., 1975), papers that employ crash rate and rate-quality control 
(Norden, 1956; Stokes and Mutabazi, 1996).To correct for the regression-to-the-mean (RTM) 
bias associated with typical HSID methods (Hauer, 2002), some researchers have suggested 
using the Empirical Bayes (EB) techniques (Hauer, 1986; Hauer and Persaud, 1987; Hauer et al., 
1988; Hauer et al., 1991). The EB method combines clues from both the crash history of a 
specific site and expected safety of similar sites, and has the advantage of revealing underlying 
safety problems which otherwise would not be detected. However, it is also revealed that EB has 
a limitation of ignoring the uncertainty in the variances of the sites to be studied and the 
reference population (Carlin and Louis, 2000). Therefore, more recently, scholars started to 
employ the Full Bayesian (FB) models for hotspot identification which include, but not limited 
to, Bayesian multivariate Poisson Log-Normal models by Aguero-Valverde and Jovanis (2009), 
alternative FB models by Huang et al. (2009) and Poisson random effect models by Jiang et al 
(2014). Rather than using overall crash frequencies at sites, some researchers have suggested 
using the potential for safety improvement to identify hot spots (Hakkert and Mahalel, 1978; 
McGuigan, 1981 & 1982; Persaud, 1999, hereafter referred to as PSI for Potential for Safety 
Improvement). The PSI-based methods rest on the premise that only "excess" crashes over those 
expected from similar sites can be prevented by applying appropriate treatments, and thus the 
potential for reduction is a better method for identifying sites with promise. Finally, there are 
papers that emphasize the importance of crash severity and costs (Tamburri and Smith, 1970; 
Taylor and Thompson, 2006).  

One prominent characteristic existing in above methods is that they were all applied to 
micro-level locations such as intersections and roadway segments for network screening purpose. 
As for macro-level safety analysis, majority of the research studies are dedicated to crash 
modeling development aiming to incorporate safety into transportation planning or to link 
aggregate crash counts with various variables such as exposure, socioeconomic and demographic 
factors. For instance, Lovegrove and Sayed (2006) developed 47 community-based collision 
prediction models, each significantly associated with one or more of 22 explanatory variables. 
Kim et al. (2006) used various linear regression models to explore the relationships between land 
use, population, employment by sector, economic output, and motor vehicle crashes in a uniform 
0.1-mi2 (0.259-km2) grid structure in Hawaii. There are also many studies focused on the 
development of zonal models of crash frequency at Traffic Analysis Zone (TAZ) level. Ladron 
de Guevara et al. (2004) applied simultaneous Negative Binomial (NB) crash model to 
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demonstrate that planning-level data or traffic analysis zone information in Tucson, AZ, 
including population density, employment, and other information, could be significantly related 
to crashes. Abdel-Aty et al. (2011) investigated the association using NB model between crash 
frequencies and various types of trip productions and attractions in combination with the road 
characteristics of 1,349 TAZs of four counties in the state of Florida. Hadayeghi et al. (2007) 
developed a series of zonal-level collision prediction models using a generalized linear 
regression modeling approach to explore relationships between collision frequency in a planning 
zone and some explanatory variables such as traffic intensity, land use, and traffic demand 
measures. Yet Aguero-Talverde (2013) adopted Full Bayes hierarchical approach to estimate the 
models of crash frequency at canton level for Costa Rica. An intrinsic multivariate conditional 
autoregressive model was used for modeling spatial random effects. Finally, there is research 
centered on modeling development of various safety performance measures at state level 
considering temporal random effect (Kweon, 2008).  

Compared with the large number of studies focused on the development of various 
macrolevel crash models, considerably less research has been dedicated to performing hotspot 
identification using pertinent models at such levels. Miaou and Song (2005) used Bayesian 
generalized linear mixed models with multivariate spatial random effects to rank sites by crash 
cost rate at the county level. Three crash severities were analyzed: fatal, incapacitating injury and 
non-incapacitating injury crashes. Subsequently, based on 35 previously developed zonal 
collision prediction models, Lovegrove and Sayed (2007) conducted a black spot study with data 
from 577 urban and rural neighborhoods across Greater Tancouver in British Columbia, Canada. 
Several collision-prone zones were identified and ranked for diagnosis. The identification 
criterion selected is the probability that EB safety estimate of specific location exceeds the 
regional average or norm for locations with identical traits. Finally, two zones were analyzed in 
detail and revealed several potential enhancements to conventional methods. Therefore, they 
recommended that macroreactive use has the potential to complement traditional road safety 
improvement programs.  

In order to add more research to the current limited literature centered on macrolevel 
hotspot identification, this paper investigates macrolelvel crash modeling use in hotspot 
identification and represents a natural continuation of the above two methods, with a number of 
important differences and unique contributions. First, the network screening was conducted at 
city level, rather than county or zonal level in previous research. Second, a set of popular and 
comparable HSID methods, or, EB, FB with NB models, FB with Poisson Lognormal (PLN) 
models, and FB with Poisson temporal random effect (PTRE) models, were investigated. Third, 
PSI was chosen as the measure of crash risk to conduct the network screening. Finally, the 
performance of various alternative HSID methods were evaluated by various criteria which 
include the Site Consistency Test (SCT), the Total Performance Difference Test (TPDT), the 
Method Consistency Test (MCT), the Total Rank Difference Test (TRDT), and the Total Score 
Test (TST). The research results are anticipated to equip road safety professionals with additional 
information for comparing and assessing the safety performance of city as a whole such as the 
HSID method selection, performance evaluation criteria choice, etc., and therefore aid the states 
in allocating the appropriate proportion of federal safety funds to various cities with confidence.   

The remainder of this paper first describes the HSID methods to be compared in the 
analysis. Then, we describe and develop the analytics of the five performance criteria. The data 
preparation and the crash prediction modeling development are then described. We then present 
the results of a comprehensive test of the HSID methods using the 5 criteria described.  
Conclusions and recommendations follow. 
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2. METHODOLOGIES 
2.1 Empirical Bayesian Method  

EB technique was originally applied to traffic safety in 1980,s due to its great advantage 
of addressing the well-known regression to the mean (RTM) issue of recorded crash statistics. 
This method rests on two assumptions: crash occurrence at a given location obeys the Poisson 
probability law, while probability distribution of the expected safety of the population of sites is 
gamma distributed. On the basis of these assumptions, the probability that a site has a random 
number of crashes is approximated by the negative binomial (NB) probability distribution. This 
method combines clues from both the crash history of a specific site and expected safety of 
similar sites, and has the advantage of revealing underlying safety problems which otherwise 
would not be detected. With EB method gradually becoming the standard and staple of 
professional practice, Hauer et al.(2002) provided a detailed tutorial on EB which features a 
series of application examples. The readers can refer to the paper for the EB details. Shown 
below are the basics of the EB method. 

In the EB method, the expected safety of a site ʎi is expressed as follows:  
                               i = wE[ i] + (1 − w)Xi  (1)                                                                           

Where w is a weight factor, E[ʎi] is the expected safety of a reference population of the 
specific location, and xi is the observed count history for site i. The w (weigh factor) can be 
calculated through the following equation: 
                                   w = E  i /{E  i + vaR  i }    (2) [ ] [ ] [ ]                                                               

Where VAR[ʎi] is the corresponding variance of the expected safety of a reference 
population. If a safety performance function (SPF), or, crash prediction model, for the reference 
population which relate crashes to covariates can be developed, w can be rewritten as follows 
(Hauer et al., 2002): 

                                   
1]/)(1[ -

*+= ɸµ Yw  (3)                                                                                 
Where µ is expected number of crashes/km-year on similar segments or crashes/year 

expected on similar intersections, Y is the number of years of crash count data used, and ɸ is the 
overdispersion parameter which is a constant for the SPF and is derived during the regression 
calibration process. 

By definition, PSI for the EB method can be derived as: 
                                     PSIi =  i − E[ i]   (4)                                                                                  
One point worth mentioning is that the study is dedicated to city-level analysis. With crashes 

being spatially highly aggregated, the advantage of EB in removing the RTM issue at the city-level might 

not be so propounded as compared to micro-level analysis. However, considering the over-dispersion 

existing in city-level crashes and as an excellent counterpart of FB, the EB is still considered in the study 

as some others (e.g., Lovegrove and Sayed, 2007) where EB is adopted for macro-level analysis.   

2.2 Full Bayesian Methods  
A full Bayesian approach is the other method under Bayes, theorem. Similar to the EB 

method, the FB method has also enjoyed wide applications in safety analysis (Davis and Yang, 
2001; Aguero-Valverde and Jovanis, 2009; Lan et al., 2009; Washington and Oh, 2006), 
especially with the availability of the software package WinBUGS (Spiegelhalter et al., 2003). 
Even though numerous studies have illustrated favorable results yielded by the EB method 
(Higle and Hecht, 1989; Maher and Mountain, 1988; Cheng and Washington, 2005 & 2008), 
some researchers also noticed the limitations associated with the EB approach (Huang et al., 
2009; Persaud et al., 2010).  In EB analysis, an external SPF has to be calibrated based on the 
locations of similar traits. Sometimes the limited reference samples can significantly impact the 
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validity of the analysis results. Another criticism goes to the EB's inadequate capability to 
explicitly account for the "uncertainty" of model parameters and coefficients. Once the SPF is 
developed, all the model parameters and coefficients are treated as constant values and then are 
incorporated into the point estimates of the long-term safety of candidate sites. Through 
empirical analyses and/or comparisons, a set of studies (Miranda-Moreno and Fu, 2007; Miaou 
and Lord, 2003; Pawlovich et al., 2006) revealed the potential advantages of the FB approach 
relative to the EB one: its capability to seamlessly integrate prior information and all available 
data into a posterior distribution (rather than point estimate), its capability to provide more valid 
safety estimates in smaller data samples, its capability to allow more complicated model 
specifications. In addition to the normal Poisson-Gamma distribution, the FB models are also 
capable of accommodating the Poisson-Lognormal distribution and various Hierarchical Poisson 
distributions which can address the serial and spatial correlations among the sites. In this study, 
HSID using the FB approach with alternative model specifications including Poisson-Gamma 
(or, NB) model, Poisson Lognormal (PLN) model, and Poisson temporal random effect (PTRE) 
model, were assessed. The details are shown in the following subsections.   
2.2.1 Model 1: Poisson-Gamma Model/Negative Binomial Model (NB)  

Under the Poisson-Gamma assumption, crash occurrence at a given location i in time 
period t, yit, obeys Poisson distribution, while the associated observation specific error term ε 
follows gamma distribution. The framework of FB NB regression model can be expressed as Eq. 
5.     

                         {yit| it~Poisson	( it)ln( it) = Xit'  +  it it~Gamma	( , 1 )    (5)                                                                 

Where i is the site index, t is the time period index, y is the recorded crash number, ʎ is 
the expected crash number, X, is the matrix of risk factors such as Daily Vehicle Miles Traveled 
(DVMT) and population, ß is the vector of model parameters, εit is the random effects, and α is 
the hyper-parameter of the model. 
2.2.2 Model 2: Poisson-Lognormal Model (PLN) 

Under the Poisson-Lognormal assumption, everything remains the same as in NB model 
except the error term εit follows normal distribution. In comparison with NB model, Lord et al. 
(Lord and Miranda-Moreno, 2008) found that PLN model could be a better alternative in case of 
low sample mean and small sample size. The potential reason is due to the heavier tails 
associated with Lognormal distribution compared to those of the Gamma distribution. Since it is 
not always clear to choose one model over the other, it is advisable to select model by 
comprehensive model diagnostics. The model specification of PLN can be expressed as: 

                                {yit| it~Poisson	( it)ln( it) = Xit'  +  it it~Normal	(0,  2	)    (6)                                                                 

Where i, t, y,  ʎ,  X, ß,  εit have the same definition as shown in Equation 5, and π  is the 
variance of the normal distribution for εit.   

2

2.2.3 Model 3: Poisson Temporal Random Effect Model (PTRE) 

As shown in Equation 6, εit in PLN model varies across different sites and time periods. 
Therefore, like NB model, PLN can also address the over-dispersion issue in the regular Poisson 
model. However, someone might argue that the same city shares identical unobserved features 
across various time periods. In other words, the error term ε in the above equation should change 
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merely over locationa, rather than acroaa yeara. Thia ia the ao-called temporal correlation. Under 
thia aaaumption, the model apecification can be expreaaed aa followa: 

                     {yit| it~POISSON	( it)ln( it) = xit'  +  i i~NOrmal	(0,  2	)  (7)                                                                   

 
Where i, t, y,  ʎ,  X, β,  and π2 have the aame definition aa ahown in Equation 6, and εi ia a 

city apecific random effect term. For each city, thia element ia generated independently from a 
Normal diatribution, hence it ia not correlated with explanatory variablea. For detaila of random 
effect modela, the readera can refer to Greene (2010).  

Accordingly, the PSI under theae modela (NB, PLN, and PTRE) can be calculated aa 
followa: 

                              {PSIit = ex' ∗ (e it − 1), fOr	NB	aNd	PLN	mOdelSPSIit = ex' ∗ (e i − 1), fOr	PTRE	mOdel (8)                      

2.2.4 Goodness-of-Fit of the Models 

Two meaaurea were aelected to aaaeaa the good neaa of fit of auch modela: The deviance 
information criterion (DIC) and mean aquared predictive error (MSPE). 

DIC (Spiegehalter et al., 2003) ia a hierarchical modeling generalization of the AIC 
(Akaike information criterion) and BIC (Bayeaian information criterion). It ia particularly uaeful 
in Bayeaian model aelection problema where the poaterior diatributiona of the modela have been 
obtained by Markov chain Monte Carlo (MCMC) aimulation. Specifically, DIC ia defined aa: 

                           DIC = D( ) + 2pD = D( )------- + pD  (9) ̅                                                 

Where D( ) ia the deviance evaluated at the poaterior meana of eatimated unknowna ( ), and 

poaterior mean deviance D---(- --)- can be taken aa a Bayeaian meaaure of fit or "adequacy". pD ia 
motivated aa a complexity meaaure for the effective number of parametera in a model, aa the 

difference between D( ) and D---(- --)-, i.e., mean deviance minua the deviance of the meana. Similar to 
the AIC, DIC givea a meaaure for how well each model fita the data and penaltiea for the number of 
parametera. Modela with lower DIC valuea provide a better fit. 

̅ ̅
̅

MSPE ia the alternative goodneaa-of-fit meaaure and can be uaed to aaaeaa the model 
efficiency. Similar to DIC, amaller MSPE value indicatea a preferred model fit. In apecific, 
MSPE ia defined aa ahown in Eq. 10. 

                                   MSPE = 1n∑(yitprEd − yitobs)2  (10)                                           

Where yprEd it ia the model prediction of expected craah number at aite i in time period t 

and yobsit 		is	the obaerved craah number for the apecific aite. 

2.3 Evaluation Criteria of HSID Performance  
Compared with the large number of atudiea focuaed on the development of varioua HSID 

methoda, conaiderably leaa reaearch haa been dedicated to deviaing the evaluation criteria for 
comparing the performance of varioua methoda. Hauer and Peraaud (1984) propoaed the uae of 
falae identificationa, conaiating of falae negativea and falae poaitivea, to meaaure the 
performancea of varioua methoda for HSID.  Baaed on theae two atatiatica, Elvik (2007) 
preaented two diagnoatic criteria including aenaitivity and apecificity. Subaequently Cheng and 
Waahington (37) developed four new evaluation criteria containing the Site Conaiatency Teat 
(SCT), the Method Conaiatency Teat (MCT), the Total Rank Difference Teat (TRDT), and the 
Poiaaon Mean Difference Teat (PMDT), where PMDT can be conducted only when the "true" 
Poiaaon mean of craah hiatory ia known.  On the baaia of thia atudy, later Montella (2010) 
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proposed a new criterion called Total Score Test (TST), which is a weighted combination of the 
SCT, MCT and TRDT criteria. Finally, Jiang et al. (2014) modified these criteria to make them 
suitable for the PSI-centered HSID methods. In addition, they also proposed a new evaluation 
criterion entitled Total Performance Difference Test (TPDT). Since the paper utilized PSI as a 
measurement of crash risk, the five criteria developed or modified by Jiang et al., or, SCT, 
TPDT, MCT, TRDT, and TST, were employed in the study to assess the HSID performance. The 
readers wishing details like assumptions, procedures and advantages associated with each test, 
can refer to the pertinent papers. The following subsections present the succinct description of 
these tests.   
2.3.1 Total Rank Difference Test (TRDT) 

This test relies on site ranking to evaluate the performance of HSID methods. The test is 
conducted by calculating the sum of total rank differences (absolute value) of the hazardous road 
sections identified in successive time periods. The smaller is the total rank difference, the more 
reliable the HSID method is. TRDT test is expressed as: 

                                   TRDTj = ∑ lR(kj,i) − R(kj,i=1)lnk=1  (11)                                        

Where R(kj,i) is the rank of site k in time period i identified by the HSID method j. 

2.3.2 Method Consistency Test (MCT) 

The test relies on the number of common sites that are identified in both time periods i 
and i+1 to evaluate the performance of HSID method.  The underlying assumption is that a site 
identified as high risk in previous period should also reveal inferior safety performance should 
the crash determinants be not significantly changed. The greater number of sites consistently 
identified in successive periods, the more consistent and reliable the HSID method is. In specific, 
MCT is expressed as: 

                                 MCTj = {k1, k2, … , kn}i ⋂{k1, k2, … , kn}i=1 (12)                                        

Where I, k have the same definition as shown in Equation 11. 
2.3.3 Site Consistency Test (SCT) 

The SCT is used to measure the ability of a HSID method to consistently identify a site as 
high risk over subsequent observation periods. It has the same premise as does MCT. The test is 
conducted by computing the sum of PSI in time period i+1 for a certain number of hotspots that 
were identified by various methods in previous period i. The larger the SCT score, the more 
reliable the HSID method in capturing sites expected to have crashes in the future. By definition, 
the expression of SCT is shown as follows: 

                                    SCTj = ∑ PSIk(i),method=j,i=1nk=1  (13)                                                     

Where PSIk(i),method=j,i=1is the PSI in time period i+1 for a site that is ranked k in time 

period i as identified by the HSID method j. 
2.3.4 Total Performance Difference Test (TPDT) 

The SCT test requires the methods being evaluated to produce similar estimates of PSI. If 
one method yields higher PSI value in general, then it is expected to have higher SCT score 
under the test. To address the issue, Jiang et al. (2014) proposed the TPDT test which assumes 
that the hotspots identified by method j with all years of crash data are true hazardous sites. For 
the top k true hotspots, the absolute difference of PSI estimated in successive time periods is 
computed and summed. The smaller the difference, the better is the corresponding HSID method. 
TPDT is expressed as below: 

                    		TPDTj = ∑ l(PSIk(i),method=j,i=1 − PSIk(i),method=j,i)lnk=1   (14)                               

Where I, j, k have the same definition as shown in Equation 11. 
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2.3.5 Total Score Test (TST) 

The TST test was originally proposed by Montella (2010) and later modified by Jiang et 
al. (2014) for its application to PSI-based HSID methods. It is a weighted score of previous test 
criteria. The highest possible TST score is 100, which indicates the corresponding method 
performs best from every aspect. Specifically, TST is calculated as follows: 

                          TSTj = 1004 ∗ [ SCTjMaxSCT + (1 − TPDTj-MiNTPDTMaxTPDT ) + MCTjMaxMCT + (1 − TRDTj-MiNTRDTMaxTRDT )}  (15)                        

Finally, it is worth mentioning again the importance of the underlying homogeneity 
assumption for the above tests:  the expected safety performance of cities remains virtually 
unaltered over successive periods. Therefore, it is highly recommended that the practitioner 
carefully check the cities and ensure they are in similar operational state across adjacent years. It 
is possible that some cities provided area-wide treatments and successfully reduced the number 
of crashes during the study period. It is advisable to exclude such cities when it is possible that 
some cities provided area-wide treatments and successfully reduced the number of crashes 
during the study period. 

3. DATA PREPERATION 
The data used in this study were collected from three sources: Statewide Integrated 

Traffic Records System (SWITRS), Highway Performance Monitoring System (HPMS) and 
California Department of Finance. 

Collisions of various cities in California that occurred from 2008-2011 were obtained 
from SWITRS that contains 6 different categories of collisions (total fatal and injury collision, 
alcohol involved fatal and injury collision, pedestrian involved collision, bicycle involved fatal 
and injury collision, motorcycle involved collision, and property damage collision) and 5 
categories of victim (vehicle driver, vehicle passenger, bicyclist, motorcyclist, and total victims 
count). The study focuses only on the total fatal and injury collisions of the cities.  In addition, a 
main exposure-related factor of city safety performance, that is, Daily Vehicle Miles Travel 
(DVMT), was collected from Highway Performance Monitoring System (HPMS) for the same 
time periods. Furthermore, a main demographic factor, or, population, was gained from the 
California Department of Finance. 

In order to improve the modeling accuracy, the collected data were then further separated 
into homogeneous groups based on Population and DVMT sizes. The results demonstrated in the 
paper are related with a group of 265 cities with small to medium size of population and DVMT. 

Summary information for the various cities in terms of population, DVMT and total fatal 
and injury collision number is shown in Table 1. 
Note: S.D. represents standard deviation. 

4. DEVELOPMENT OF COLLISION PREDICTION MODELS 
The development of collision prediction models (CPM, or, SPF under EB method) is 

described in this section. It is worth stressing that these models should not be judged on their 
ability to explain the causal factors related to collision occurrence. The main purpose for 
developing these functions is to provide the expected collision counts for specific cities that are 
required to apply the EB and FB methods-thus the focus is for crash prediction, not 
explanation. As shown in Table 1, originally both population and DVMT of the 265 cities were 
collected to serve as the explanatory variables. However, during the modeling diagnostic 
process, it was noticed that there is strong correlation between population and DVMT. In order 
to obliterate the potential bias caused by the collinearity between population and DVMT, the 
authors decided to drop the variable of Population from the CPM,s. Therefore, only DVMT is 
included in the CPM,s as an independent variable. 



 

 

 

  
   

    
  

    
 

 
  

   
   

 
 

 
    

 
   

  
  

   
 

    
  

   
   

  
   

 
 

 
  

 
  

  
   

 
 

 

 

 

 

 

As mentioned in the Methodologies Section, due to overdispersion of collisions observed 
on various cities in CA, Negative Binomial regression models were generally fit in order to 
generate SPFs when using EB. Hereafter referred to as EBNB. In order to reduce the random 
effects of the collision data, the model was fitted with the mean collision frequency of each city 
in 4 years (2008–2011) as the target variable, and the logarithm of the mean DVMT as the 
predictor.  Thus, the total number of observation for the EB NB model is 265. 

Additionally, three models were fitted using FB approach which include the Negative 
Binomial (FBNB), Poisson Log-Normal (FBPLN), and Poisson temporal random effect 
(FBPTRE). These models were developed with the original panel data for 4 years separately. In 
other words, the total fatal and injury collision record for each city in each year was treated as 
one observation in the models. Hence, the total numbers of observations for the three models are 
1060 (265*4). 

When implementing the FB  analysis in freeware  WinBUGS version 1.4.3 package , 
uninformative priors were assumed with normal distribution (0, 1000) for all regression  
coefficients (  β ), and with gamma distribution (0.001, 0.001) for hyper-parameters associated  

with the disturbance terms, i.e., 1/  a in FB NB model, 0. in FB PLN  and FB  PTRE models. In  
model calibration, two chains of 20000 iterations  were set up for each model. After  ensuring the  
convergence, first 5000 samples were discarded as adaptation and burn-in.  

Modeling results of these models including, DIC, MSPE, the mean, standard deviation, 
and 2.5% and 97.5% quintiles of the posterior distribution, are presented in Table 2. Both the 
DIC and MSPE values indicate that the FBPTRE model is superior to the FBPLN and FBNB 
model in fitting the crash data, while the latter two share almost the same performance. FB PLN 
has relatively smaller MSPE, but its DIC is somewhat larger than that of FBNB. Note that Lord 
et al. (2008) previously found that PLN model could be a better alternative in case of low sample 
mean and small sample size. The same phenomenon is not revealed herein may be due to the 
large sample mean associated with the more aggregate level of city collision. It is also important 
to note that the DIC value of the EBNB model is not comparable to others in the sense that the 
number of observations is one fourth of other models. One more noteworthy point is that τ2 in 
FBRTRE is larger than that in FBPLN. In comparison with Equations 6 & 7, it can be concluded 
that the variation among various sites represent the larger variance among collision counts. 

HSID RESULTS 

The five tests described previously (SCT, TPDT, MCT, TRDT, and TST) were used to 
assess the relative performance of the four HSID methods, EB, FBNB, FBPLN and FBPTRE. 
The evaluation experiment followed the following procedure: 
1.  The four year data (2008-2011) were evenly divided into 2 time periods, Period 1 (2008

2009) and Period 2 (2010-2011). 
2.  For each HSID method, cities are sorted in descending order of estimated PSI on the basis of 

data of Period 1. 
3.  Cities with the highest rankings are flagged for further investigation. Typically, a threshold is 

assigned based on law requirements or according to safety funds available for improvement, 
such as the top 5 % of cities. In this evaluation, both the top 10% and 5% cities are used as 
cutoff levels. 

4.  Estimated PSI’s of both time periods were compared under each test to assess the 
performance of various HSID methods. 
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5.1 Site Consistency Test Results 
Using SCT test it is shown in Table 3 that the FBPTRE method outperforms other HSID 

methods in identifying both the top 5% and 10% cities with highest sum of PSI,s, 25,885.23 and 
36,075.71, respectively, in Period 2 followed closely by the FBPLN method. The EB method 
performs the worst in both cases, with the identified cities experiencing the lowest PSI values, 
9,617.61and 12,136.48 respectively. In comparison with the other two FB alternatives, the FBNB 
method performs relatively poorly, where the sites identified by this method in Period 1 produce 
smaller PSI values in Period 2.  

However, as mentioned in previous test description, the limitation of SCT is this test 
requires the methods being evaluated to produce similar estimates of PSI because different 
methods have different ways to calculate the PSI. Therefore, the more insightful information 
might be obtained by comparing the two PSI values in two periods by the same method. As 
expected, the PSI in Period 1 would be larger than that of Period 2 as the HSID is conducted 
using the data of Period 1. The better method would yield the smaller PSI decrease in Period 2 
relative to that in Period 1. For convenience of comparison, the relative difference was also 
calculated by dividing the difference of PSI in two periods by PSI in Period 1. The smaller 
relative difference, the more reliable the method in identifying the cities showing more PSI 
values in the future period.  As shown in Table 3, the lowest relative difference percentages in 
both cases of identifying top 5% and 10% cities indicate the FBPTRE method has the best 
performance amongst the four HSID methods, with EB performing the worst.  

5.2 The Method Consistency Test Results 
Table 4 shows the number of similarly identified cities identified by alternate HSID 

methods over the two periods. The FBPTRE method is superior in this test by identifying the 
largest number of the same hot spots in both cases of top 5% and 10%, or,13 and 26 sites 
respectively. In other words, the FBPTRE method identified 26 sites in Period 1 that were also 
identified as hot spots in Period 2. The FBNB, which performs slightly better than the FBPLN 
method, places 2nd with identifying 13 consistent hot spots (in the case of top 5%) and 24 
consistent hot spots (in the case of top 10%). The EB performed last with the lowest number of 
consistent hot spots identified in the two periods. Again, the FBPTRE method outperforms the 
other HSID methods.  

Also shown in Table 4 are differences between percentages (shown in the parenthesis) of 
column 2 and column 3 for the four methods. There is a consistent drop in percentages as 
threshold values drop. The explanation is that the top sites suffer from greater random 
fluctuations in collisions and thus the higher the threshold the larger are the random fluctuations 
and the likelihood of not being identified in a prior year.  

5.3 Total Rank Difference Test Results 
Table 5 illustrates that the FBPTRE method is vastly superior using the Total Rank 

Difference Test. In both the cases of top 13 and 26 cities being identified, the FBPTRE method 
has significantly smaller summed ranked differences; by about 20% compared to the FBPLN and 
FBNB, and by more than 200% compared with the EB. FBPLN and FBNB in this test share very 
similar performance with almost the same rank difference in both cases. Again, the EB performs 
the worst by producing much larger rank differences. This result suggests that the FBPTRE 
method is the best HSID method (of the 4 methods evaluated here) for ranking cities consistently 
from period to period. 
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5.4 Total Performance Difference Test Results 
Inspection of Table 6 reveals the results of the Total Performance Difference Test, which 

was proposed by Jiang et al. (13) to address the limitation of SCT test. In the case of top 5%, the 
FBPTRE appears to top other alternative methods by yielding lowest PSI difference. The FBPLN 
method trails closely behind the FBPTRE with slightly greater difference. In the case of top 
10%, the FBPLN performs best by producing the smallest PSI difference. In both cases, the 
FBNB method remains in the 3rd place, followed by the EB, which generates the highest PSI 
differences in two periods under both conditions.   

As mentioned previously, the underlying assumption is that the hotspots identified by 
HSID method with all years of crash data are considered as true hazardous sites. Hence, the 
results shown in this test should be interpreted with care due to the relatively small accident 
history (4 years). Maybe this is a potential reason that PBPTRE did not perform best in both 
cases as it did under other tests. Considering other test results, it is plausible to expect that the 
advantage of the FBPLN in this test relative to FBPTRE would diminish with longer collision 
histories, and would be surpassed by the FBPTRE method. Regardless, the FBPTRE and FBPLN 
method perform similarly using this test.   

5.5 Total Score Test Results 
Recall that TST, originally proposed by Montella (2010) and subsequently modified by 

Jiang et al. (2014), produces a synthetic index integrating all previous test results. The maximum 
possible score (100) indicate the corresponding method performs best in every test being used. 
Table 7 reveals that the FBPTRE outperforms others in both case studies (top 5% and 10% of the 
cities), obtaining values of 100 and 99.77, respectively. The FBPLN method was slightly worse 
than the FBPTRE, followed by the FBNB method, and lastly the EB method (which is 
significantly worse than its FB alternatives).  

5.6 Discussion of Test Results 
The test results at city level highlight that each of the FB approaches significantly 

outperforms the EB method under various tests.  Overall, the study results are consistent with the 
results of the previous quantitative evaluations carried out by others (Huang et al., 2009: Jang et 
al., 2014: Miranda-Moreno and Fu, 2007: Miaou and Lord, 2003: Pawlovich et al., 2006). EB 
recently has enjoyed wide applications especially after it was made available through several 
safety design and evaluation tools, including the Interactive Highway Safety Design Model 
(IHSDM), SafetyAnalyst and Highway Safety Manual (HSM). It is highly recommended that 
more research be carried out to verify the study results because different HSID methods yield 
different sets of hazardous locations.  It can be observed from Table 8 that the numbers of sites 
that were consistently identified as hotspots by the Empirical Bayesian and three full Bayesian 
methods in the top 5% and 10% levels are 9, 10, 10 and 16, 16, 12, respectively. The lowest 
common rate, 12 out of 26, occurred in the case of identifying top 10% cities by EB and 
FBPTRE. In other words, this means that 14 among the top 26 cities identified by these two 
methods do not match.  On the contrary, the largest number of common sites, 23, happened in 
the case of identifying top 10% cities between FBPLN and FBPTRE. 

Both Empirical Bayes and the full Bayes are under Bayes' theorem, which shrinks the 
observed collision number to the "real" mean with additional information borrowed from the 
reference population. The test results indicate that the FB approaches might integrate the 
borrowed information more reliably and smoothly than does the EB. Another classification of the 
alternative HSID methods being evaluated is the methods with and without the temporal random 
effect. Hence, the authors are also interested in investigating the impact of serial correlation of 
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errors on the shrinkage of the two types of information. To this end, the authors randomly 
selected 10 cities whose PSI's range widely (from 27.4 to 906.1) and further compared the 
performance of FBPLN and FBPTRE on these cities. The PSI of the 10 cities under the two 
methods for two different periods is illustrated in Figure 1.  

Inspection of Figure 1 shows that the PSI values (represented by the 2 solid lines) 
estimated by the PLN model change significantly from Period 1 to Period 2, while those 
estimated by the PTRE model (represented by the two dash lines) are more consistent across the 
time periods. This is consistent with our expectation as the PLN model assumes the same site in 
different years to be independent observations. In other words, under the PLN method, the 
information from other locations and the information from the same site of different time periods 
have a same weight on the estimation of PSI for each site. By contrast, the PTRE method 
includes a site specific error term, which shrinks the observed mean of each time period to the 
"real" mean over years. Hence, as demonstrated in Figure 1, given the assumption that no change 
was experienced on the sites, the model that takes into account the serial correlation is more 
reliable.  

6. CONCLUSIONS 
Numerous methods have been proposed in the past to conduct HSID at micro levels such 

as road segments and intersections. On the contrary, very few studies have been dedicated to the 
network screening of more aggregate levels which include the county level by Miaou and Song 
(2005) and zonal level by Lovegrove and Sayed (2007). To add more research centered on HSID 
of macrolevel to the current literature, the authors performed HSID by using the data from CA at 
city level. It is anticipated that the research results could facilitate improved decisions by city 
planners and engineers when evaluating the safety performance of city as a whole, and therefore 
allow the states to allocate appropriate proportion of funds to various cities. Additionally, the 
paper aims to investigate whether the previous HSID findings at microlevel can also be revealed 
at the city level, which has much larger sample mean and variance.  

 Four years of city data from the State of California were collected to compare alternate 
HSID methods, including the EB and three FB alternatives, FBNB, FBPLN and FBPTRE, for 
ranking the safety performance of cities. Five evaluation tests which contain the Site Consistency 
Test (SCT), the Method Consistency Test (MCT), the Total Rank Difference Test (TRDT), the 
Total Performance Difference Test (TPDT) and the Total Score Test (SCT) were applied to 
evaluate the performance of the four HSID methods. The intended use of these tests is akin to the 
selection of statistical models where multiple criteria are used to select the 'best' model, 
including adjusted R-square, F-ratio, t-statistics of model variables, signs, and magnitudes of 
coefficients, and mean square error. As in statistical modeling, a model will not be 'best' among 
all criteria, and the analyst must compare models against a set of criteria and subjectively choose 
the most appealing model. Potential for Safety Improvement (PSI) was adopted as a measure of 
the crash risk. Moreover, two cutoff levels, top5% and 10% cities, were employed for reliable 
results. After evaluating these four methods, the following conclusions are drawn: 

∙ The FBPTRE method outperformed the other three HSID methods on the Site 
Consistency Test, followed very closely by the FBPLN method. That is, the FBPTRE and 
FBPLN methods identified cites in Period 1 that produced the highest PSI value in Period 
2-demonstrating good consistency. The EB method performed the worst. 

∙ The FBPTRE method is superior to other three methods in terms of the Method 
Consistency Test, That is, the FBPTRE method consistently identified a larger 
intersection of cites across observation periods. The FBNB and the FBPLN method 



 

 

 

  
  

   
 

    
     

 

    
    

   
  

 
 
 

  
   

  
  

   
   

   
   

 
 

 
  

 
    

 
  

 
   

  
    

 

  
  

 

  
 

 
 

followed the FBPTRE method in 2nd and 3rd place, respectively, while the EB method 
performed worst. 

• Compared with the Method Consistency Test, the Total Rank Difference Test revealed 
pronounced benefits associated with the FBPTRE method. The FBPTRE method 
outperformed all competing HSID methods on this criterion, showing great consistency 
in ranking cites across observation periods. The EB method performed the worst by a 
large margin. 

• In the Total Performance Difference Test, the FBPTRE and FBPLN shared the best 
performance in the cases of top 5% and 10%, respectively. Again, the EB method 
performed the worst against this criterion.  

• In the Total Score Test, the highest scores indicate the FBPTRE has the best performance 
under different tests combined. FBPLN and FBNB are ranked in  place with 
FBNB having slightly lower score values. The EB method performed significantly worse, 
with much lower score values in both situations. 
Overall, our study results are consistent with the results of numerous previous 

quantitative evaluations focused on micro-level HSID. First, the three FB approaches 
significantly outperform the EB counterpart. However, it is important to note the performance 
difference might be due in part to the different number of observations for EB (265) and FB 
(1060). Second, FBPLN and FBNB have the similar HSID performance, with the former one 
slightly better than the latter one. Third, the method accounting for temporal random effect yields 
more reliable HSID results than do the ones without considering the serial correlation in collision 
counts.  This result is somewhat alarming, as EB has recently been adopted in the Highway 
Safety Manual and used by many agencies to conduct HSID. Therefore, it is desirable to have 
further studies dedicated to improving the EB method by more efficiently combining the two 
types of safety clues, reference population and crash history of each specific site.  

The results observed in this paper require some caveats. First, only one independent 
variable is included in the collision prediction models and as a result the functional forms might 
not be appropriate in some cases. Second, the advantages associated with the FBPTRE methods 
are obtained based on California collision data, and the relative performances of HSID methods 
may change when using other accident data (this result is possible but not expected). Third, only 
temporal random effect is analyzed in the paper. Incorporation of other random effects such as 
spatial correlation might change the benefits related with the method that accounts for various 
random effects. It is therefore highly recommended that future studies accounting for both 
temporal and spatial correlations be conducted for the city level to check the benefits of FB 
methods exhibited in this study. Finally, there are only two time periods employed for method 
performance assessment. It is desirable to have future studies with more time periods for more 
reliable results. 
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TABLE 1 Descriptive Statistics of Collected Data of Various Cities 

Variables Description Year Min Max Mean S.D. 

Collision Total Annual 
Fatal and 
Injury 
Collisions 

2008 10 3,879 377.3 493.0 

2009 8 3,745 374.4 489.5 

2010 17 3,945 371.3 493.4 

2011 13 3,900 369.9 470.5 

Pop Population 
Number  

2008 25,117 98,709 89,564.5 102,455.8 

2009 25,265 1,014,965 90,940.2 104,975.1 

2010 25,077 952,509 88,704.4 100,439.5 

2011 25,261 964,371 89,221.6 101,199.7 

DVMT Daily 
Vehicle 
Miles 
Traveled 

2008 33,849 8,267,781 873,508.5 969,563.4 

2009 28,430 8,363,995 884,913.9 979,646.5 

2010 41,307 8,364,002 899,321.4 986,362.3 

2011 37,465 8,625,277 899,084.4 1,017,646.8 
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TABLE 2 Description of Results of Various Models 

Variable  Mean SD 2.5% 97.5% 

EBNB  

Intercept -7.86 0.42 -8.68 -7.04 

logDVMT 1.02 0.03 0.96 1.08 

Overdispersion φ=5.94;       DIC= 3,195.3; MSPE=217,746.8        

FBNB 

Intercept -0.45 0.41 -1.06 0.32 

logDVMT 0.41 0.03 0.35 0.46 

Alpha (α) 1.20 0.03 1.14 1.25 

DIC=7233.5; MSPE=204,849.9        

FBPLN 

Intercept 0.35 0.99 -1.41 1.78 

logDVMT 0.38 0.07 0.28 0.51 

Tau (π2) 2.06 0.29 1.62 2.64 

DIC=7364.1; MSPE=187,790.4        

FBPTRE 
Intercept 0.48 0.51 -0.29 1.30 

logDVMT 0.29 0.05 0.22 0.38 

Tau (π2) 3.10 0.33 2.58 3.68 

DIC=6838.5; MSPE=151,036.7        
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TABLE 3 Results of Site Consistency Test (SCT) of Various Methods  

Method Top 5% (13 cities) Top 10% (26 cities) 

PSI 
2008-
2009 

PSI 
2010-
2011 

Relative 
Difference 

PSI 
2008-2009 

PSI 
2010-2011 

Relative 
Difference 

EB 11,842.37 9,617.61 18.79% 14,937.13 12,136.48 18.75% 
FBNB 21,062.05 20,187.85 4.15% 28,157.90 26,770.80 4.93% 
FBPLN 25,563.00 24,948.50 2.40% 36,232.50 35,034.35 3.31% 
FBPTRE 26,381.35 25,885.23 1.88% 37,451.95 36,705.71 1.99% 

Notes: Relative difference is calculated as the PSI difference in two periods relative to PSI in Period 1. 

  



 

52 

 

TABLE 4 Results of Method Consistency Test (MCT) of Various Methods  

Method Top 5% (13 cities) Top 10% (26 cities) 

EB 11 (84.6%) 19 (73.1%) 
FBNB 13 (100%) 24 (92.3%) 
FBPLN 13 (100%) 23 (88.5%) 
FBPTRE 13 (100%) 25 (96.1%) 

Notes: The number represents locations identified by methods in both periods, the percent shown in parenthesis stands for the percentage of 

consistent hot spots, or the percentage of hot spots identified in Period 1 that were also identified in Period 2.  
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TABLE 5 Results of Total Rank Differences Test (TRDT) of Various Methods  

Methods Top 5% (13 cities) Top 10% (26 cities) 

EB 47 294 
FBNB 20 63 
FBPLN 18 64 
FBPTRE 15 58 
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TABLE 6 Results of Total Performance Differences Test (TPDT) of Various Methods  

Methods Top 5% (13 cities) Top 10% (26 cities) 

EB 2594.85 3526.52 
FBNB 1085.55 1654.86 
FBPLN 690.23 1252.35 
FBPTRE 645.56 1284.47 
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TABLE 7 Results of Total Score Test (TST) of Various Methods  

Methods Top 5% (13 cities) Top 10% (26 cities) 

EB 44.64 41.08 
FBNB 87.60 88.96 
FBPLN 97.07 96.35 
FBPTRE 100.00 99.77 
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TABLE 8 Common Cities Identified by Various Methods  
              

 
Top 5% (13 cities) Top 10% (26 cities) 

EB FBNB FBPLN FBPTRE EB FBNB FBPLN FBPTRE 

EB - 9 10 10 - 16 16 12 
FBNB 9 - 11 10 16 - 21 20 

FBPLN 10 11 - 12 16 21 - 23 
FBPTRE 10 10 12 - 12 20 23 - 

 
  



 

57 

 

 

 
 

 

 

  

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

P
S

I

10 Random Sites

FBPLN08~09

FBPLN10~11

FBPTRE08~09

FBPTRE10~11

FIGURE 1 Comparison of PSI estimation under FBPLN and FBPTRE for 10 random sites 
Notes: PSI represents the Potential for Safety Improvement  
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ABSTRACT 
A large number of neighborhood weight matrices have been adopted for modeling crash spatial 
heterogeneity. However, there has been little evaluation of the influence of these different weight matrix 
structures on the crash prediction modeling performance. This study is focused on investigation of 17 
different spatial-proximity matrices for development of spatial crash prediction models and site ranking 
using county-level data in California. Among the group of matrices being evaluated, traffic exposure-
weighted and population-weighted distance-based matrices are first proposed in the traffic safety field. To 
address serial correlation of crashes in successive years, Bayesian spatial analysis was conducted with the 
combination of a first order autoregressive (AR-1) error process and time trend for crashes.  

Two diagnostic measures were used for assessment of goodness-of-fit and complexity of models. In 
addition, seven evaluation criteria were employed to assess the benefits associated with better fitting models 
in site ranking. The results showed that modeling performance gets improved with the increase in number 
of neighbors being considered in the weight matrix. However, the larger number of neighbors also leads to 
larger variability of modeling performance. Specifically, Queen-2 and Decay-50 models proved to be 
superior among the adjacency and distance-based models, respectively. The significance of incorporating 
spatial correlations was highlighted by the consistently poor performance of the Base model which included 
only heterogeneity random effect. Finally, the model-fitting performance seems to be strongly correlated 
with the site ranking performance. The models with closer goodness-of-fit tend to yield more consistent 
ranking results. 

Keywords: neighborhood weight matrix structures, first order autoregressive (AR-1) error process, 
Bayesian spatial crash prediction model, goodness-of-fit  
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INTRODUCTION 
Previous research studies explored the spatial component of crashes as an advancement to the 

existing crash prediction models (1-3). Numerous spatial units have been taken into consideration to 
understand the implications of crash causing factors which operate at spatial scale (e.g. urban planning 
policy, census characteristics, highway classification, and so on). Depending on the purpose of study, the 
sites of interest could range from microscopic locations, such as block group (4-5), intersections (6), road 
segments (7), corridors (8-9), to macroscopic areas such as census tracts (10), health areas (11), traffic 
analysis zones (TAZs) (12-15), or counties (16-20). Comparatively speaking, the microscopic analysis is 
primarily centered on investigating the factors associated with geometric or traffic characteristics which 
influence the traffic safety on a network. Subsequently, engineering solutions are suggested for mitigation 
of risk. On the other hand, macroscopic safety analysis concentrates on quantifying the impact of 
socioeconomic and demographic characteristics, transportation demand and network attributes so as to 
provide countermeasures from a planning perspective. Such policy-based countermeasures could be 
enactments of traffic rules, police enforcements, safety campaigns, and area-wide engineering treatments. 

The literature review illustrates that a wide range of neighborhood weight matrix structures have 
been proposed to model crash spatial heterogeneity for both micro-level and macro-level analyses. Aguero-
Valverde and Jovanis (21) explored the effect of spatial correlation in models of crash frequency at segment 
level by using a Full Bayesian (FB) approach with conditional autoregressive (CAR) effects (22). Three 
adjacency-based weight matrices were developed for first, second and third order neighbors. The results 
demonstrated that the models with spatial correlations showed a significantly better fit than the Poisson 
lognormal model which considered only heterogeneity.  Guo et al. (9) developed models to incorporate the 
spatial proximity at corridor level between intersections due to similarity in road design and environmental 
characteristics. The distance between intersections was adopted as the weight for CAR model. The 
modeling results demonstrated that the Poisson spatial model provided the best fit. Recently, Aguero-
Valverde et al. (23) used a multivariate spatial model to account for spatial correlation among adjacent sites 
(road segments) to enhance model prediction for different crash types. The multivariate conditional 
autoregressive (MCAR) model was used with the first order adjacency-based weight matrix. Their results 
show that the model that considers both multivariate and spatial correlation has the best fit.  

A wide array of geographical units and weight matrices have been explored in macro-level 
modeling as well. Best et al. (24) investigated the risk of leukemia in children at three different levels of 
data aggregation: Local Authority Districts (LADs), census wards and 1 km2 grid squares. They examined 
adjacency versus distance-based neighborhood spatial weights for each of analysis. Rhee et al. (25) used 
GIS-developed spatial variables to prepare a database of traffic crashes at TAZ level to explore the 
significant variables influencing the crashes. The Rook adjacency-based weight matrix was used for 
analysis of spatial component of crash heterogeneity. Results showed that the spatial error model was better 
than the spatial lag model and an ordinary least squares baseline regression. Aguero-Valverde and Jovanis 
(19) applied univariate space-time model to analyze county-level crash counts. The first-order adjacency 
matrix was utilized for the CAR error term. The results demonstrated the existence of spatial correlation in 
crash data. Huang et al. (20) proposed a Bayesian spatial model to account for county-level variations of 
crash risk in Florida. A CAR prior was specified to accommodate for the spatial autocorrelations of adjacent 
counties. The results exhibited little difference in safety effects of risk factors on all crashes and severe 
crashes. 

Compared with the large amount of research dedicated to modeling spatial heterogeneity in crash 
counts using various weight matrix structures, there is little evaluation of the influence of these different 
weight matrices on the crash prediction modeling performance. Aguero-Valverde and Jovanis (21) 
evaluated the effects of different neighboring structures on the spatial correlation in crash frequency models 
using CAR model. The weight structures being investigated include exponential decay, adjacency-based, 
adjacency-route information, and distance order structures. Modeling results showed relatively inferior 
performance by exponential decay models. Also, the inclusion of spatial correlation substantially increased 
the random effects. Another study (35) presented an evaluation of crash prediction models at the TAZ levels 
with alternative types of spatial proximity structures containing 0-1 first-order adjacency, common-
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boundary length, and centroid distance-based models. The CAR model was also implemented. The results 
confirmed the extensive existence of cross-zonal spatial correlation in crash occurrence. The best predictive 
capability appeared to be associated with the model that used the common-boundary lengths. Moreover, 
full consideration of all possible spatial correlations for all zones significantly increased model complexity, 
which might lead to reduced predictive performance. 

The first part of this paper compares alternative spatial-proximity structures and represents a natural 
continuation of the above two studies, with a number of important differences and unique contributions. 
First, more comprehensive weight matrices are evaluated which include 2 orders of Queen adjacency-based, 
2 orders of Rook adjacency-based, common boundary length adjacency-based, 5 exponential decay, 5 pure 
distance order, population-weighted and traffic exposure-weighted distance order matrices.  Amongst the 
17 neighboring structures, the last two are first proposed in the traffic safety field. Moreover, the model 
without considering spatial heterogeneity is also developed to check the existence of cross-county spatial 
correlation in crash counts. Second, the serial correlation of the county-level crash count was taken into 
count via using the first order autoregressive (AR-1) error process and global time trend combined. Third, 
the relationship between the crash frequency modeling performance and the number of neighbors in the 
weight matrices is explored in greater detail. 

In addition to evaluating the impact of weight structures on the crash frequency model complexity 
and fit, this paper also evaluates the effect of these structures on the site ranking performance. The ranking 
agreement of different weight matrices was assessed by seven different evaluation criteria: sensitivity, 
specificity, positive predictive value (PPV), negative predictive value (NPV), Cohen,s kappa, total ranking 
difference (TRD) and mean absolute deviation (MAD).  

The remainder of this paper first describes the methods employed for development of models with 
17 different weight matrices, criteria for assessment of fit of those models, and the evaluation procedures 
implemented to analyze their performance. Then the source of data and its segregation is explained. Finally, 
the modeling and evaluation results are presented, followed by conclusions and recommendations for future 
research.  

 
METHODOLOGY 

Spatial autocorrelation occurs when events happening at different but nearby places are correlated. 
These were explored among 58 counties of California using a wide array of weight matrices ranging from 
simple to more sophisticated ones. This study analyzed 17 different neighborhood matrices and applied 
them to the county-level datasets of California. In addition, the model without accounting for spatial 
heterogeneity was also developed to assess the benefit of inclusion of spatial correlation in the crash count 
model. Hence, the process involved development of 18 different models using WinBUGS for estimation of 
crash rate, evaluation of their goodness-of-fit, and finally evaluation of relative site ranking performance 
of models. This study used the Full Bayesian (FB) hierarchical approach to account for the structural 
heterogeneities such as temporal and spatial ones. The model is of the form developed by Besag et al. (36): 
                                                                       yit~Poisson	(eit it) (1)                                                                  
Where, yit is the observed crash count at county i in time period t and  it is the mean expected crash rate 
for site i in time period t, and eit is the exposure in county i of time period t. In this case, the exposure is 

the total daily vehicle-miles (DVMT) by county. The crash rate is modeled as shown in the following 
equation: 
                                                        Log( it) = 	 0 +  1tk + ∅i + ui (2)                                                       

Where, DVMT is the traffic exposure,	 0 is the intercept,  1 is the fixed coefficient for the linear trend term 
tk, ∅i is a spatially structured random effect, and ui is a spatially unstructured random effect (heterogeneity). 
It should be noted that usually the model development incorporates some probable influential factors but 
the model in this study does not incorporate any covariates as the major focus of this study is to investigate 
the spatial correlations. This similar framework can be found in other studies (26, 27). Likewise, the 
interaction between time and space was not included as it might potentially blur the comparison of different 
weight structures. In addition to the global time trend applying to all counties in California, this model also 
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accounts for the autoregressive safety effect by specifying the distribution of ui as a lag-1 dependence in 
errors. Lag-1 is the correlation one year apart in this study (hence k=1). AR-1 was chosen to capture the 
departure from tend and it was based on the assumption of stationarity restriction.  

                                                     ui~normal (0,  σi2(1- γ2) ) (3)				                                                                

                                                    uit~normal) γ εi,t-1, σit2) for t>1 (4)                                              

Where,  γ is the autocorrelation coefficient with the following range: 0 <  γ < 1. The combination of AR-1 
and deterministic time trend for serial correlation can be found in the current practice. An example is 
the STEPAR (stepwise autoregressive method) specification provided in SAS/STAT 9.2 user's guide (37).   

To accommodate the spatial correlation in the model, CAR prior was introduced for the spatial 

random effects. The formulation of the CAR model used in our analyses is shown below (28): 

                                                             [∅i j ∅ j i l ∅ , i ≠ j, π 2] ~ N (∅ , π 2) (5)

The above equations show that the neighboring sites have an influence on the crash risk associated with an 
area.  Subscripts i and j represent a county and its neighbor respectively, and j ε Ni where Ni represents the 
neighbor set for region i. The weights are included as they also influence the risks, besides the neighbors. 
The weights for the adjacency and distance models are given by weights

                                                       

 ij (wij) = 1 if i, j are adjacent, and 
0 otherwise. Apart from the adjacency based models, different weights were used for other models which 
are explained in detail in the following subsections. For ease of illustration, all weight matrices being 
evaluated in the study are classified in Figure 1.  

 

 

 

Matrices

Spatial

Adjacency-
based

Queen

[Queen 1, Queen 2,

Boundary Length]

Rook

[Rook 1, Rook2]

Distance-
based

exp distance

[Decay (50), Decay (100), Decay 
(150), Decay (200), Decay (250)]

Distanceexp

Pure Distance

[Equal Distance (D0), D0.5 (D-0.5), D1 (D-1), D2 
(D-2), D3 (D-3)]

Gravity

[Population, DVMT]

Without 
Space [Base]

FIGURE 1  Types of weight matrices.

Adjacency-based Models
These models ignore the distance between sites of interest and focus only on neighboring structures 

based on proximity in space. Five different neighborhood adjacency-based weight matrices were developed, 
namely Queen-1, Queen-2, Rook-1, Rook-2, and Boundary Length (BL). The difference between Queen 
(Q) and Rook (R) is the criterion of assignment of neighbors. Queen uses the common boundaries as well 
as vertices to determine the adjacent neighbors while Rook considers only the common boundaries. For 
example, in top right corner of Figure 2, in case of Mariposa county: Rook neighbors are Tuolumne, Merced, 
and Madera counties, while Queen neighbors are Tuolumne, Stanislaus, Merced, Madera, and Mono 
counties. The numbers at the end reflect the order of contiguity, which means that the difference between 
Queen 1 and Queen 2 (and corresponding Rook 1 and Rook 2) is that Queen 1 includes the direct neighbors 
which share common points, while Queen 2 also includes the further neighbors of neighbors. It should be 
noted that for both cases, only the selection of neighbors is different, the first or second order neighbors 
contribute equal weights for the adjacency weight matrix. Finally, another weight matrix was developed 
for immediate neighbors based on the length of the boundary shared between counties. BL matrix placed 
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more weightage among the neighboring counties which shared a longer boundary. For example, in the lower 
portion of Figure 2, it is known that there are five neighboring counties to San Bernardino County: Inyo, 
Kern, Los Angeles, Orange and Riverside. It is certain by mere visual inspection that Riverside has the 
longest boundary length while Orange has the smallest. Hence, the former would have the most weightage 
while the latter would have least weightage in BL matrix. The inclusion of this matrix is based on the 
hypothesis that a longer boundary increases the area for interaction of traffic between two counties and 
hence it may have a significant influence on the crash risks. It is important to note that BL is a special case 
of Queen 1 and they have the same number of neighbors. Clearly, adjacency-based weight matrices depict 
a binary or dichotomous situation where the wights have only two responses, zero and one. This approach 
requires relatively lesser data collection and computational efforts as compared to the other approach of 
distance-based weight matrices.  

Distance-based Models 
To account for a variety of scenarios, we also developed twelve models based on distance matrices. 

The simplest model, Equal Distance (ED), assigned equal weightage for weight matrix as it included all the 
counties as neighbors. The other models placed different weightages on neighbors. For Distance 0 (ED), 
0.5, 1, 2, & 3, the following formulations were used: wij = 1/dist0

ij, wij = 1/dist0.5
ij, wij = 1/distij, wij = 1/dist2

ij 
and wij = 1/dist3

ij, respectively. These five models explored the different relationships between the weight 
and distance (e.g. linear, quadratic, cubic). These models only accounted for the relative distance between 
neighboring counties and placed more weight on counties that were closer together. Another similar set of 
models was developed ("Decay-50, 100, 150, 200 and 250") which was also based on the distance between 
neighbors. But these decay models were essentially different from regular distance models as there was a 
drastic reduction of weights as the distance between neighbors increased (29). The corresponding weight 
matrix for the "Decay" model was defined as: 

                                                            wij = e-distij		 0 (6)δ                                                                      

Where, wij = weight of the jth neighbor of the ith county, distij = geographic centroid distance between 
counties i and j, and δ0 = a constant. 

The decay was chosen based on the exploratory examination of correlogram of total collision count 
and average county distance of 250 miles. Five decays were chosen to incorporate different distances 
between the counties as the range of geometric centroid distances between counties was from 25-962 miles. 
In addition to the above two types of distance-based matrices, two Gravity models based on distance were 
also developed which borrows the idea of Gravity model from the standard "Four-Step" travel demand 
modeling process. The hypothesis is that sparsely populated neighbors and counties with less traffic 
exposure provide little information for spatial analysis. Population and DVMT were chosen in the study as 
they are commonly utilized by planners to assimilate the demographic changes for transportation modeling. 
The corresponding weight matrices were defined by wij = pipj/distij, where pi and pj are normalized 
populations and DVMTs of two counties under consideration, respectively. To the best knowledge of 
authors, such gravity models are first applied in the traffic safety field. The similar neighboring structures 
can be found in the public health field (31). It is noteworthy that the distance-based matrices contain more 
information, depending on their complexity, compared to the previously mentioned adjacency-based weight 
matrices. The calculated weightage offers more flexibility than the binary response of adjacency ones as it 
is calculated depending on the distance between target sites. The data collection and computational efforts 
significantly increase in this case due to the additional information. 
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                   Queen and Rook neighbors 

FIGURE 2  California counties and associated centroids. 

Goodness-of-Fit of Crash Frequency Models 
This study used DIC (Deviance Information Criterion) to assess the complexity and goodness of fit 

of the models. DIC is a hierarchical modeling generalization of the AIC (Akaike Information Criterion) 
which was proposed by Spiegelhalter (30) to account for model fit and complexity. Specifically, DIC is 
defined as: DIC = D( ) + 2Pd = D- + Pd  (7) 




